Достоинства и недостатки коллекторного отопления дома

Надувная лодка с электроприводом от солнечной батареи

Достоинства таких систем

Всезнающая статистика подсказывает, что с помощью таких батарей, можно удовлетворить половину потребности на обогрев жилища. И если еще пару десятков лет назад такое казалось фантастикой, то сейчас КПД современных коллекторов достигает 70 % улавливаемой устройством солнечной энергии. Однако, это не означает, что все системы одинаково эффективны и будут хорошо функционировать в разные времена года. Поэтому перед выбором оборудования не лишнем будет проконсультироваться со специалистами и доверить его установку профессионалам.

Человечество постепенно оказывается от традиционных установок обогрева жилья и устаревших печек. Газовые и твердотопливные котлы вскоре будут вытеснены солнечными водонагревателями. Хотя, надо признать, отношение к ним пока еще остается предвзятым, слишком много бытует у наших людей заблуждений относительно возможностей новых технологий. Одно из них касается низкой эффективности работы коллекторов в зимний период. Подобное утверждение в корне неправильное и в этом легко убедиться, ознакомившись с главными принципами функционирования данного оборудования.

Достоинства таких систем

Большим преимуществом является то, что вакуумный солнечный коллектор, установленный для отопления дома, способен эффективно работать на протяжении всего года, совершенно прост и абсолютно безопасен во всех отношениях.

Важным фактором, о котором обязательно следует упомянуть, является великолепный эстетический вид гелиоустановки. После правильно осуществленного монтажа солнечные панели придают зданию оригинальный и весьма симпатичный вид, они сами смотрятся довольно солидно и красиво.

А самое главное преимущество прогрессивной системы заключается в том, что она совместима с другими аналогичными устройствами. Отопление дома солнечными коллекторами в сочетании с твердотопливным котлом вполне будет эффективным там, где нет газовых магистралей и отсутствует электроснабжение.

Достоинства таких систем

Окупаемость и цена вакуумных коллекторов

Противники зеленой энергетики убеждают всех, что вакуумные солнечные коллектора не окупаются, а если это и происходит, то за очень долгий срок. Отчасти это так, но только если ваш дом уже подключен к газу или электричеству. А если учесть стоимость подключения?

Если сравнивать стоимость подключения к газопроводу и установки коллекторов – они вполне соизмеримы. Но газ это расходная статья бюджета, тогда как на работу вакуумного коллектора требуется минимум электроэнергии, да и то, только на прокачку теплоносителя. Практика показывает, что для отопления дома зимой вакуумный солнечный коллектор гораздо выгоднее других источников тепла.

Еще один момент который касается окупаемости – срок службы оборудования. В отопительной системе, основанной на трубчатых солнечных коллекторах, нет сложных деталей или частей, которые подвержены износу. При периодической профилактике такая система прослужит десятки лет.

Коллекторы

Принцип работы

В основе работы любого СК лежит парниковый эффект. Сущность его хорошо известна: возьмем открытую с одной стороны камеру с поглощающей свет поверхностью. Закроем ее крышкой, прозрачной для видимого света (желательно также – ультрафиолета, УФ), но хорошо отражающей тепловое (инфракрасное, ИК) излучение. Этим условиям в значительной степени удовлетворяют силикатное стекло и оргстекла; почти полностью – кварцевое стекло и др. минеральные стекла на основе плавленого кварца.

Примечание: называть пропускающие УФ стекла минеральными вообще-то неправильно, т.к. силикатное стекло тоже минеральное. Лучше было бы сохранить прежнее название «кварцевое стекло», т.к. большую часть шихты для выплавки УФ-прозрачных стекол составляет дробленый кварц. Есть еще турмалиновые стекла, но не для быта – в переплавку на них идут кристаллы драгоценных камней.

Солнечный свет, попав в камеру, поглотится ею, и камера нагреется. Чтобы избежать теплопотерь, снабдим ее теплоизоляцией. Тогда тепловая энергия превратится в ИК, но через крышку оно выйти наружу и рассеяться не сможет. Теперь ИК не остается ничего иного, как греть помещенный внутрь теплообменник с теплоносителем или продуваемый через камеру воздух. Если их нет, температура внутри будет повышаться до тех пор, пока разность температур внутри и снаружи не «продавит» избыточное тепло сквозь теплоизоляцию и не установится термодинамическое равновесие.

Читайте также:  Выясняем, как рассчитать систему отопления

Модель абсолютно черного тела

Коллекторы

Что такое АЧТ

Чтобы лучше разобраться в дальнейшем, вам нужно знать, как работает пирамидальная, или игольчатая, модель абсолютно черного тела (АЧТ); поскольку другие нам не понадобятся, далее, если речь пойдет о модели АЧТ, «пирамидально-игольчатая» везде опускаем. В рунете, и в инете вообще, о ней толком ничего не доищешься, но в лабораторной практике и технике такие успешно применяются. Как она устроена – ясно из рис. справа. А в данном случае – поглощение света в СК будет тем лучше, чем ее покрытие или сама конфигурация эффективно поглощающей поверхности (ЭПП) ближе по свойствам к модели АЧТ.

Примечание: АЧТ называется тело, поглощающее электромагнитное излучение любой частоты. Древесная сажа, напр. – не АЧТ, при фотосъемке через ИК-фильтр она выглядит светло-серой. Пирамидально-игольчатая модель АЧТ способна поглощать любые, не только электромагнитные, колебания. Так, в акустике поролоновыми пирамидками оклеивают внутренние поверхности звукомерных камер.

Каким должен быть угол наклона коллектора

Угол установки плоского солнечного коллектора зависит от следующих факторов:

  1. Регион проживания. Для южных регионов – 30-35°, для средней полосы – от 40°.
  2. Время года, когда планируется использовать установку (летний или зимний сезон, круглогодично). Для всесезонного применения выбирают угол, которые примерно равен географической широте региона. Летом это значение уменьшают на 15°. Зимой, наоборот, увеличивают.
  3. Климатические условия и количество осадков. Если гелиосистема используется в зимой, угол наклона делают крутым, чтобы снег не скапливался на ее поверхности.
Каким должен быть угол наклона коллектора

В сопроводительной инструкции производитель указывает оптимальные показатели угла наклона для каждого солнечного нагревателя. Соблюдение всех условий для определения значений углового наклона способствует максимально эффективной работе оборудования.

Схемы подключения преобразователей

Существует несколько схем подключения гелиосистемы в зависимости от их назначения:

Схемы подключения преобразователей
  • Горячее водоснабжение на лето от коллектора. В схеме предусмотрена естественная циркуляция воды, но для повышения эффективности можно установить насос. Бак монтируется на высоте 80-100 см от емкости для сбора воды. Коллектор с баком соединяется трубами диаметром ¾ дюйма. Стенки емкости утепляют минватой толщиной 10 см и слоем полиэтилена. На зиму воду из системы сливают.
  • Круглогодичное использование гелиосистемы для подогрева воды. Для защиты от замерзания в контуре используется антифриз, также монтируется бойлер косвенного нагрева. Подогретый в коллекторе антифриз проходит через змеевик бойлера и подогревает воду в нем. Система укомплектовывается группой безопасности и расширительным баком, также нужен циркуляционный насос.
  • Отопление от гелиосистемы. В этом случае также понадобится бойлер косвенного нагрева. Для дополнительного нагревания теплоносителя используют котел на газе или твердом топливе. Осенью и весной котел можно отключить. Для эффективного отопления дома площадь гелиоколлектора должна составлять 40-50% от площади постройки.
  • Отопление и горячее водоснабжение от гелиосистемы. Для воды понадобится специальный бойлер с отдельной емкостью и змеевиком для циркуляции теплоносителя. Бойлер дополнительно подключают к котлу на газе, электричестве или твердом топливе.

Как работает солнечный коллектор зимой

Как работает солнечный коллектор зимой – этот вопрос интересует любого, кто собирается установить гелиосистему. И он действительно важен. Ведь вкладывая свои средства вы должны знать, чего ожидать от купленного оборудования.

В этой статье мы рассмотрим особенности работы вакуумных и плоских коллекторов, их производительность и нюансы эксплуатации.

Осадки и наморозь

Когда у коллектора нет доступа к прямому солнечному свету, он перестает работать. Вакуумные коллекторы могут нагревать воду или теплоноситель от рассеянного света, но их эффективность при этом снижается. Плоским панелям нужно прямое солнечное излучение, иначе они нагревают воду намного хуже вакуумных трубок. Плоские солнечные панели лучше работают летом, а принцип работы вакуумного трубчатого коллектора позволяет более эффективно греть воду зимой.

Когда поверхность панели или трубок засыпает снегом, эффективность вакуумного солнечного коллектора падает до 10-15% от номинальной, а плоских панелей – до 0%. То же самое касается инея.

В случае, если на коллекторе появляется наледь, он продолжает работать, так как она почти прозрачная и свет проникает на принимающую поверхность.

Еще одно отличие двух типов коллекторов в том, насколько они удерживают снег. С плоских панелей он легко сползает, а на вакуумных трубках задерживается, так как площадь сцепления с поверхностью больше и сама их форма этому способствует.

На вакуумные трубки часто намерзает иней и налипает снег, поэтому они нуждаются в регулярной очистке.

Температурные колебания

Качественные вакуумные трубки с напылением не отдают тепло, верхний слой не нагревается, поэтому от температуры воздуха их эффективность не зависит. Плоский солнечный коллектор отдает небольшое количество тепла в атмосферу, но оно не превышает 5% для качественных изделий.

Читайте также:  Как подключить циркуляционный насос к электричеству?

Теплопотери обоих типов гелиосистем настолько малы, что ими можно пренебречь. Поэтому эффективность работы коллекторов не зависит от температуры.

Обслуживание солнечных коллекторов зимой.

Плоские солнечные панели

Чтобы солнечный коллектор работал эффективно, его нужно чистить от снега, инея и наледи. С плоским коллектором все просто – его можно очистить специальным скребком или пролить теплой водой.

Некоторые производители предлагают панели с системой оттаивания. Она может быть реализована по-разному, но чаще всего это дополнительный контур, через который при необходимости прокачивается горячая вода. Это небольшие энергозатраты, но с помощью такой системы нет отпадет нужда вручную чистить панели.

Вакуумный коллектор

Снег забивается между трубок, поэтому очистить их сложнее, чем поверхность плоского коллектора. На боковые стенки приходится до 20% поглощения солнечного света, а если коллектор с отражателем (рефлектором), то до 50%.

Вручную чистить вакуумные трубки сложнее чем плоскую поверхность. Чтобы облегчить этот процесс, можно закрыть коллектор корпусом с прочным стеклом – так можно упростить его очистку не потеряв производительность. Можно проливать его теплой водой, но стоит помнить что из-за перепада температур трубка может треснуть.

Как работает солнечный коллектор зимой с точки зрения эффективности?

По сравнению с летом, зимой эффективность работы вакуумного солнечного коллектора падает на 10-15%. Плоские панели работают хуже на 25-40%. Для наглядности приводим сравнительный график, на котором показано как работает солнечный коллектор зимой и летом в зависимости от его типа.

Сравнительный график, на котором показана эффективность плоских панелей и трубчатых вакуумных коллекторов в зависимости от времени года.

КПД работы солнечного коллектора зависит от уровня облачности. Если на улице солнечная погода, уровень инсоляции составляет 0,5-1 кВт/кв.м., при легкой облачности он падает до 0,1-0,2 кВт/кв.м., когда на небе темные тучи, до поверхности доходит 0,01-0,05 кВт/кв.м.

Большую роль играет продолжительность дня – зимой она в два раза меньше, чем летом. Соответственно, при самой хорошей погоде любой коллектор сможет только 50% того тепла, какое дал бы в летний сезон.

Чтобы улучшить коэффициент энергоэффективности солнечного коллектора, пожно оиспользовать его в паре с дополнительным оборудованием:

  • Тепловые насосы;
  • Газовые котлы;
  • Твердотопливные котлы;
  • Электрические обогреватели.

А для энергетической независимости нелишним будет установить альтернативные источники электроэнергии — солнечные батареи и ветрогенератор.

Как видим, эксплуатация солнечных коллекторов зимой связана с определенными сложностями. Но это не значит что они неэффективны. Просто, чтобы обеспечить отопление дома вакуумными коллекторами или солнечными панелями, нужно правильно подойти к расчету системы.

Не забудьте поделиться публикацией в соцсетях!

Похожие записи

Вакуумный солнечный коллектор

Вакуумные системы имеют довольно сложное устройство. Основным рабочим элементом является дорогостоящая светопоглащающая трубка особой конструкции. В основу положен принцип термоса. Поверхность вакуумной трубки прозрачная. Она пропускает солнечный свет на внутреннюю трубку. Из пространства между ними откачан воздух, отсутствие газа позволяет сохранять до 97 % тепла.

В нижней части внутренней трубки находится теплоноситель – жидкость, которая при нагревании быстро переходит в газообразное состояние. В верхней части трубки происходит передача тепла коллектору, при этом теплоноситель охлаждается и, конденсируясь, возвращается в изначальное состояние. Системы с использованием вакуумных трубок обладают довольно высоким КПД при температуре ниже -37 °С и плохой освещенности. Это оборудование требует своевременной очистки от снега и монтажа строго под определенным углом. Также периодически прозрачные сегменты следует очищать от загрязнения. Вакуумный солнечный коллектор специально разрабатывался для северных широт. Он эффективно работает при отсутствии прямых солнечных лучей.

Другие компоненты системы

Недостаточно просто собрать излучаемое солнцем тепло. Нужно его еще транспортировать, накопить, передать потребителям, нужно контролировать все эти процессы и т. д. А это означает, что помимо расположенных на крыше коллеторов система содержит множество других компонентов, может быть менее заметных, но при этом не менее важных. Остановим ваше внимание лишь на некоторых из них.

Теплоноситель

Функцию теплоносителя в контуре коллектора может выполнять либо вода, либо незамерзающая жидкость.

Вода имеет ряд недостатков, накладывающих определенные ограничения на использование ее в качестве теплоносителя в гелиоколлекторах:

  • Во-первых, при отрицательных температурах она застывает. Чтобы замерзший теплоноситель не разорвал трубы контура, с приближением холодов его придется сливать, а значит, зимой вы не получите от коллектора даже небольших количеств тепловой энергии.
  • Во-вторых, не слишком высокая температура кипения воды может стать причиной частых стагнаций в летний период.
Читайте также:  Экономичное отопление дома зимой: 5 способов

Незамерзающая жидкость в отличие от воды обладает значительно более низкой температурой замерзания и несравнимо более высокой температурой кипения, что повышает удобство использования ее в качестве теплоносителя. Однако при высоких температурах «незамерзайка» может претерпеть необратимые изменения, поэтому ее следует оберегать от чрезмерного перегрева.

Насос адаптированный для гелиосистем

Для обеспечения принудительной циркуляции теплоносителя по контуру коллектора необходим насос, адаптированный для гелиосистем.

Теплообменник для ГВС

Перенос тепла от контура гелиоколлектора к воде, используемой в ГВС, или к теплоносителю системы отопления осуществляется посредством теплообменника. Как правило, для накопления горячей воды используют резервуар большого объема с уже встроенным теплообменником. Рационально использовать баки с двумя и более теплообменниками: это позволит забирать тепло не только у солнечного коллектора, но и у других источников (газовый или электрический котел, тепловой насос и т. д.).

Автоматика

Такой сложной системе не обойтись без автоматики, осуществляющий контроль и управление процессом. Контроллер позволяет автоматизировать работу коллектора: он осуществляет анализ температуры в контуре и накопительном резервуаре, управляет насосом и клапанами, ответственными за движение теплоносителя по контуру. При перегреве теплоносителя в контуре и воды в баке контроллер отдаст команду на сброс тепла в альтернативный теплоприемник – дополнительный резервуар с водой или уличный воздушный теплообменник.

Если в конце светового дня температура воды в накопительной емкости превысит температуру теплоносителя в контуре коллектора, автоматика остановит циркуляцию теплоносителя по контуру, чтобы накопленное тепло не выбрасывалось в атмосферу через сам коллектор. Современные контроллеры дают возможность удаленно следить за работой системы и при необходимости вносить корректировки.

Сегодня не составит труда найти на рынке гелиоколлектор и любой из компонентов, необходимых для его работы. Вполне реально собрать систему из купленных по отдельности элементов. Однако производители предлагают уже готовые комплекты, которые включают в себя коллектор, насосы, накопительные резервуары, управляющую автоматику и т. д. Приобретение такого комплекта – это не только экономия вашего времени, но и гарантия работоспособности системы.

Ваше мнение о солнечных коллекторах

  • Хороший альтернативный источник обогрева, планирую использовать
  • Считаю, что они не подходят для моего региона, не планирую использовать
  • Не могу принять решение

ГолосоватьЕсли вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.Поделиться:

Выводы и полезное видео по теме

Принцип проектирования системы:

Выводы и полезное видео по теме

Как правильно выполнить монтаж:

Установив коллекторную систему отопления в своем доме, вы получите возможность индивидуально настраивать режимы работы приборов.

Выводы и полезное видео по теме

А дополнительные расходы на увеличение длины труб компенсируются уменьшением их диаметра и упрощением монтажа системы.

У вас дома коллекторная отопительная система? Или вы только планируете ее обустроить, а пока изучаете информацию? Может у вас возник вопрос по составлению схемы разводки коллекторной системы? Задавайте свои вопросы, делитесь личным опытом обустройства отопления в доме, оставив под этой статьей.

Выводы и полезное видео по теме

Кол-во блоков: 16 | Общее кол-во символов: 23267Количество использованных доноров: 7Информация по каждому донору:

  1. -o/: использовано 3 блоков из 7, кол-во символов 6613 (28%)
  2. : использовано 2 блоков из 4, кол-во символов 6222 (27%)
  3. -sistemy/proektirovanie-i-montazh-kollektornoy-otopitelnoy-sistemy: использовано 2 блоков из 8, кол-во символов 3925 (17%)
  4. : использовано 2 блоков из 4, кол-во символов 231 (1%)
  5. -raboty/kollektornaya-sistema-otopleniya-kvartiry/: использовано 2 блоков из 6, кол-во символов 3989 (17%)
  6. -otoplenija/: использовано 1 блоков из 4, кол-во символов 73 (0%)
  7. : использовано 1 блоков из 4, кол-во символов 2214 (10%)

Сравнение характеристик солнечных коллекторов

Самым главным показателем солнечного коллектора является КПД. Полезная производительность разных по конструкции солнечных коллекторов зависит от разности температур. При этом плоские коллекторы значительно дешевле трубчатых.

Значения КПД зависят от качества изготовления солнечного коллектора. Цель графика показать эффективность применения разных систем в зависимости от разницы температуры

При выборе солнечного коллектора стоит обратить внимание на ряд параметров показывающих эффективность и мощность прибора.

Для солнечных коллекторов есть несколько важных характеристики:

  • коэффициент адсорбции – показывает отношение поглощенной энергии к общей;
  • коэффициент эмиссии – показывает отношение переданной энергии к поглощенной;
  • общая и апертурная площадь;
  • КПД.

Апертурная площадь – это рабочая площадь солнечного коллектора. У плоского коллектора апертурная площадь максимальна. Апертурную площадь равна площади абсорбера.